
Specifying Interaction Categories

(extended abstract)

S. Abramsky

�

and D. Pavlovi�c

y

Department of Computing, Imperial College, London SW7 2BZ

Abstract

specifying by operations and equations; forcing is a method of specifying new

models of set theory over the old ones. Note that the Birhko� theorem, axioma-

tising categories that arise in universal algebra, as well as the Giraud theorem,

providing the axioms for those those which arise from forcing, came only after

extensive development of the corresponding speci�cation methods. Thorough

studies of the practice of specifying usually precede abstract characterisation of

a class of structures.

2 Speci�cations and categories derived from them

The two speci�cation methods that we are about to describe both begin from an

arbitrary, possibly degenerate interaction category R. The �rst of them yields

a category with the same objects as R but with morphisms capturing a richer

notion of process, while the second one re�nes the type structure, but leaves the

morphisms essentially unchanged.

2.1 Specifying processes

De�nition 2.1 A functor h : R ! Q between monoidal categories [16, sec. 1.1.]

is said to be lax monoidal if it is given with a natural family

�

AB

: hA
 hB �! h(A
B) and an arrow

� : > �! h>;

which are coherent in the sense that for all A;B;C the following diagrams com-

mute

hA
 hB
 hC

//

�
id

��

id
�

h(A
B)
 hC

��

above, and it will be isomorphic with Q if and only if F is bijective on objects.

In fact, any essentially surjective F induces a weak equivalence F

0

: R

h

! Q,

with F = (J ;F

0

). We spell out just the 1-dimensional part of the underlying

2-adjunction. Note that it extends to V-enriched categories for any monoidal V

in place of Set.

Fix an autonomousR and consider the categoryR=Bij of bijective on objects,

autonomous functors out of it. A morphism from such an F : R ! Q to

G : R ! P will be an autonomous functor M : Q ! P, satisfying (F ;M) = G

(and necesssarily bijective on objects too).

On the other hand, let [R; Set]

lax

be the category of lax monoidal functors

and lax monoidal transformations. A natural transformation ' : h ! h

0

is said

to be lax monoidal if � ;'

>

= �

0

and (�

AB

;'

A
B

) =

�

('

A

� '

B

) ;�

0

AB

�

.

Proposition 2.2 R=Bij ' [R; Set]

lax

2.2 Specifying types

De�nition 2.3 Let R be a category and B a bicategory [7]. A lax functor

P : C ! B is an assignment for each object A of R of an object PA in B and for

each arrow f : A ! B of a 1-cell Pf : PA ! PB in B. Furthermore, P comes

equipped with the 2-cells

�

fg

: Pf ;Pg �! P(f ; g) for every composable f and g, and

�

A

: id

PA

�! P(id

A

) for every object A,

Extracting from such a speci�cation P : R ! Rel an interaction category R

P

is not essentially more complicated than extracting R

h

in 2.1, but it has very

general background and deep conceptual roots.

Comprehension for categories. Consider the bicategory Span: its objects are

sets, and a morphism from A to B is a pair of functions A M ! B. A 2-cell

to another such pair A M

0

! B is just a function ' : M !M

0

, commuting

with the pairs. Given a span B N ! C, the composite A (M ;N) ! C

is obtained by calculating a pullback of M ! B and B N . Identities will

clearly be in the form A

id

 A

id

! A. A span A

a

 M

b

! B can also be viewed as

an A�B-matrix of sets, with ha; bi

�1

(i; j) as the (i; j)-th entry. The 2-cells are

obviously just entry-wise families of functions. The described composition then

corresponds the usual matrix multiplication, using the set-theoretical sums and

products.

Now any lax functor P : R ! Span induces the total category

between the category of functors to R, with commutative triangles as mor-

phisms, and the category of lax functors R ! Span and the functional lax

transformations. A lax transformation ' : P ! Q : R ! Span is a family of

matrices '

A

: PA!

j

QA with a coherent 2-cell (Pf ;'

B

) �! ('

A

;Qf) for every

f : A! B. It is said to be functional if all components '

A

are functions.

The establisned equivalence extends in various directions. By dropping the

functionality requirement, and varying the notion of lax transformation on the

right-hand side, one gets various interesting classes of morphisms on the left-

hand side: indexed profunctors and anafunctors [18], and a categorical form of

simulations. On the other hand, it restricts to the Conduch�e correspondence

[23], to the Grothendieck construction [15], and so on, until it boils down to the

familiar correspondence Set=R ' [R; Set] of the functions to a set R and the

R-indexed sets | and, �nally, to the comprehension scheme Sub=R

�

=

[R;
],

connecting the subobjects of R with the predicates over it. Indeed, just as the

extension fx 2 Rjp(x)g ,! R can be obtained as a pullback of the truth t : 1!

along the predicate p : R !
, the construct

R

R

P �! R can be obtained as

a pullback along P : R ! Span of the obvious projection t : Span

�

�! Span,

where Span

�

is the total category of the identity on Span.

To restrict to the lax functors P : R ! Rel, note that a relation R ,! A�B

is a jointly monic span A R! B, i.e. a matrix of 0s and 1s.

A bang thus lifts from R to R

h

. However, the couniversal bang, sending each

object to the corresponding cofree
-comonoid, may loose its property in lifting.

Finally, using just de�nition (2), one easily shows that the (weak) products

and coproducts are preserved and thus created by the functor R !R

h

as soon

as the speci�cation h : R ! Set preserves the (weak) products. However, we

shall see that usually does not. Process speci�cations alone thus yield categories

with few limits and colimits. Adding more types corrects this.

Lifting structures along type speci�cations is less straightforward, although

quite uniform. Looking at the correspondence from proposition 2.4, one sees

that any, say, binary functorial operation �, preserved by

R

R

P �! R, cor-

responds to a functional lax transformation PA � PB

�

�! P(A � B), with

hA;�i � hB; �i = hA � B;� � �i. In order to lift � from R to R

P

, we must

thus specify the corresponding transformations. This is where we depart from

the degeneracies of R.

3 Examples

The idea is to start from a simple model R, and successively re�ne it by speci-

fying

R �! R

h

1

 � (R

h

1

)

P

1

�! ((R

h

1

)

P

1

)

h

2

 � (((R

h

1

)

P

1

)

h

2

)

P

2

�! � � �

The view of processes as relations in time suggests that any category of relations

could be taken as the base R. Namely, the calculus of relations as jointly monic

spans can be developed not just over sets but over more general categories C

[12]. The obtained category Rel(C) is always compact closed, but varying C

allows additional structure on actions.

3.1 Synchrony

The simplest case is of course Rel = Rel(Set). Let the process speci�cation

s : Rel! Set assign to every set A the poset sA of nonempty, pre�x-closed sets

of �nite strings from A. These strings are to be thought of as \the elements

of A extended in time", so that the elements of sA become \the subsets of A

extended in time". Algebraically, they can be presented as one-sided multiplica-

tive systems of the free monoidA

�

, i.e., the complements of the one-sided ideals

of A

�

.

The arrow part of s will map a relation A R ! B to the function sR :

sA! sB, de�ned

sR(S) = ft 2 B

�

j9s 2 S:sR

�

tg; (11)

7

where A

�

 R

�

! B

�

is the componentwise extension of R to strings. The lax

monoidal structure consists of the function �

AB

: sA� sB �! s(A
B), where

�

AB

(S; T) = fu 2 (A
 B)

�

j�

�

A

(u) 2 S ^ �

�

B

(u) 2 Tg; (12)

and � 2 s1 consisting of all �nite strings of � 2 1.

The category sproc = Rel

s

, obtained by the construction from 2.1, is a rudi-

mentary interaction category of synchronous processes, modulo the trace equiv-

alence. Finer notions of behaviour are obtained by taking as the elements of sA

transition systems, or A-labelled trees, rather than just the traces S � A

�

. Def-

initions (11) and (12) readily extend. Working modulo bisimilarity complicates

matters [19, 20], but everything goes through.

The synchronous interaction category SProc [2] is obtained by a further

type speci�cation S : sproc !

� must be the unit of any monoid in Set

�

. Rather than (1+A)

�

, the free monoid

over 1 + A is thus 1 +A

+

, where A

+

consists of all nonempty strings from A.

The object part of as

�

thus takes 1 + A to the set of pre�x-closed subsets

of 1 + A

+

, each containing �. The arrow part is de�ned using the monoid

homomorphism

g

(�) : (1 + A)

�

�! 1 + A

+

, which removes � from all nontrivial

strings, and induces the weak equivalence s � t () es =

e

t. A relation

1 + A R! 1 +B now goes to the function as

�

R : as

�

A �! as

�

B, de�ned

as

�

R(S) = ft 2 1 + B

+

j9s 2 S: s � R

�

� tg: (14)

In words, a string t belongs to as

�

R(S) if there is a string s in S such that

s and t can be �lled up with sequences of � in such a way that they become

componentwise R-related.

By a similar trick, the function �

AB

: as

�

A � as

�

B �! as

�

(A
 B) shu�es

the strings:

�

AB

(S; T) =

n

u 2 ((1 + A)� (1 +B))

+

j

f

�

�

A

(u) 2 S ^

f

�

�

B

(u) 2 T

o

(15)

An element of �

AB

(S; T) is obtained by taking some s 2 S and t 2 T , possibly

of di�erent length, interpolating � in them at will, to get s

0

= �

1

: : : �

n

and

t

0

= �

1

: : : �

n

, and then forming u = h�

1

; �

1

i : : : h�

n

; �

n

i. The unit is � = f�g.

The asynchronous interaction category as

�

proc = Rel

�

as

�
is obtained as be-

fore. A version depicting a �ner notion of behaviou can again obtained using

(1+A)-labelled trees or transition systems, this time modulo weak or branching

bisimilarity. A full edged asynchronous category AS

�

Proc, with weak biprod-

ucts and a weakly couniversal bang, is obtained by adding more types along a

speci�cation AS

�

: as

�

proc �! Rel, similar to S from section 3.1, but relaxed

modulo �.

The original asynchronous category ASProc [2, sec. 5] is obtained in the

same way, but using relations in place of partial functions, i.e. starting from

Req = Rel(Rel) rather than Rel

�

= Rel(Set

�

). Req is the category of sets and the

partial equivalence relations on A+B as the morphisms from A to B. Namely, a

relation A

j

R!

j

B in Rel boils down to a jointly surjective pair A! R B in

Set

�

. Alternatively, Req can be viewed as the full subcategory of Rel spanned by

the power sets}A.

A in 1 + A + A as the �rst copy, then the multiplication should send the �rst

two As from 1+ (1+A+A) + (1+A+A) to 1+A+A in order, and twist the

last two of them.) Besides the idling �, this monad captures the input/output

distinction | between the elements of the two copies of A. The Kleisli category

Set

�

for this monad can now be viewed as the category of sets, with pairs

hf; F i as morphisms from A to B, where f is a partial function A * B and

F is a subset of A. The composite of hf; F i : A ! B and hg;Gi : B ! C

consists of the usual composite of partial function (f ; g), accompanied with the

set

�

F \ '

�1

(G)

�

[

�

F \ '

�1

(G)

�

, where F;G denote the complements. The

free monoid A

�

over A in Set

�

will be the quotient of 1 + (A + A)

+

satisfying

�� = � for all � 2 A, with (�) : A+ A �! A +A denoting the twist map. All

monoids in Set

�

that already the synchronous ones can be speci�ed in many di�erent, meaningful

ways.

Coh

��
$$

I

I

I

I

I

I

I

I

I

SCProc

��
%%

K

K

K

K

K

K

K

K

K

Rel

$$

I

I

I

I

I

I

I

I

I

scproc

��

SProc

yys

s

s

s

s

s

s

s

s

sproc

(19)

3.4 Games

Categories of games are specifed starting from signed sets Set

�

. A signed set A

