

a simple sensory system and a motor system enabling forward and rotational

moves. The behavior itself, which involves moving in on any small object in the

sensory �eld but `standing clear' of any large object, seems rather straightfor-

ward. However, it turns out to be poorly learned by supervised methods. We

explain this `failure-to-learn' using a statistical analysis based on a qualitative

distinction between two classes of generalization e�ect.

The paper is divided into six main sections. This, the �rst section, is an intro-

duction. In the second section we describe the comparative study, the simulation

Thesimulationsetup.currentinputs.Theruleswereasfollows.

set of examples. To obtain these, we repeatedly sampled the animat's reactions

during simulation runs. This involved interrupting our simulation program in

the middle of each time cycle and recording the sensory input received by the

animat at that point, and the amount of drive being sent to the two wheels.

The input/output pairs thus produced gave us the required training set.

The conditional-approach behavior entails producing three, basic behavioral

responses to four scenarios. With no object appearing in the sensory �eld the

animat must swivel rightwards by 10 degrees. With an object appearing at

long-range, or a small object appearing at close-range the animat must execute

a forwards move towards that object. (This might or might not involve a change

in direction.) With a large object appearing at close-range the animat should

remain stationary.

To ensure that each of these responses had an equal representation within the

training data we used the following initialization regime. Each time the animat

arrived at a small object or remained stationary for more than 20 cycles, we

reinitialized the environment, changing the size of the single object, and ran-

domly choosing a new position for it. Thus, in each successive phase of the

simulation, the animat would be confronted by an object of a di�erent size and

di�erent relative position. The sampled stimulus-responses pairs thus contained

roughly equal numbers of the four responses.

Our general strategy for testing the e�ciency of training (with a particular

learning algorithm) was as follows. Following derivation and presentation of

the relevant training set (see above) we would re-run the simulation program

interrupting it in the middle of each cycle. The animat's current proximity

inputs would then be presented as a `test case' to the relevant learning algorithm.

The output returned would be used to drive the wheels of the animat. At the end

of the simulation run, we would evaluate the overall behavior as a reproduction

of the desired behavior.

2.3 Format of training examples

The inputs from the sensory system were represented (for purposes of training)

in the form of real numbers in the range 0.0-1.0. The inputs formed a nor-

malized measure of proximity and embodied 10% noise. The amount of drive

applied to the two wheels in each simulation step was represented in the form

of two real numbers, also in the range 0.0-1.0. Thus, a full right turn with no

forwards motion would appear in the training set as the pair <1.0,0.0> (given

the assumption that the �rst number sets the drive on the left wheel and the

second number the drive on the right wheel).

A sample of training pairs derived for the conditional-approach task is shown

6

in Table 1. Note that the �rst seven numbers in each row (training pair) are

the noisy proximity inputs. These are labeled v1, v2, v3 etc. The �nal two

numbers in each row specify the required amount of drive to be applied to the

two drive wheels. These are labeled d1 (amount of drive to the left wheel) and

d2 (amount of drive to the right wheel). The �rst row shows a case of `standing

o�' from a large object: the amount of drive for both wheels is 0.00. The second

row illustrates the default behavioral response (swivel ten degrees to the right)

produced whenever all the proximity inputs are zeros (indicating no object has

been sensed). The swivel e�ect is achieved by setting the amount of drive for

the right wheel to be 0.3.

v1 v2 v3 v4 v5 v6 v7 d1 d2

0.00 0.00 0.00 0.27 0.38 0.33 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3 0.00

0.00 0.00 0.81 0.81 0.81 0.79 0.78 0.00 0.00

0.00 0.87 0.88 0.89 0.89 0.89 0.00 1.00 1.00

0.00 0.00 0.00 0.27 0.38 0.33 0.00 0.00 0.00

0.73 0.74 0.00 0.00 0.00 0.00 0.00 0.4 1.00

0.81 0.81 0.81 0.79 0.78 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.85 0.84 0.82 0.00 1.00 0.80

0.00 0.00 0.00 0.78 0.78 0.00 0.00 1.00 1.00

0.00 0.00 0.00 0.00 0.76 0.77 0.76 1.00 0.80

Table 1:

2.4 Algorithms and parameter settings

The use of standard-format training sets enabled us to test the performance

of any supervised learning algorithm on the conditional-approach problem. In

practice we tested the performance of a wide range of algorithms including ID3

[4] and C4.5 [5], feed-forward network learning algorithms of the backpropaga-

tion family including `vanilla' backpropagation [6], a second-order method based

on conjugate-gradient descent [7] and a second-order method based on Newton's

method called `quickprop' [8]. We also tested a constructive network learning

method called `cascade-correlation' [8] and a classi�er/genetic-algorithm com-

bination based on Goldberg's `simple classi�er system' [9].

The standard ID3 algorithm has no user-de�nable parameters. Thus there is

only one way to apply it to a particular training problem. It produces as output

a standard-format decision tree in which the leaf nodes are labeled with speci�c

output cases and each internal node tests the value of a particular input variable.

7

C4.5 is a more e�cient version of ID3 that enables various parameters to be

set to control tree-pruning actions. However, in all cases reported we used the

program in unrestricted mode, i.e., with parameters set so that it would perform

no pruning whatsoever.

All the network algorithms tested operate by modifying the connection weights

in a �xed, non-recurrent network of arti�cial neurons (using the standard logistic

activation function). The e�ciency of network learning is determined by feeding

in novel inputs to the network and seeing what outputs are generated after the

activation has propagated across all the relevant connections. When applying

network learning algorithms the user must decide the internal architecture of the

network

3

and, in some cases, the learning and momentum rate. When testing

the various network learning algorithms we experimented with a range of two-

layered, feed-forward architectures (with complete inter-layer connectivity) but

found that the best performance was obtained using nine hidden units; i.e. we

settled on a 7-9-2 feed-forward architecture. All the results reported relate to

this case.

When testing standard backpropagation we found that a learning rate of 0.5

and a momentum of 0.9 gave best results and these were the settings used in all

the cases reported. When testing iterative learning algorithms (i.e., the network

learning algorithms) we ran the algorithms for a minimum of 100,000 epochs of

training (i.e., 100,000 complete sweeps through the entire training set).

In testing the classi�er-system/genetic algorithm combination we used an imple-

mentation based closely on Goldberg's `simple classi�er system'. The classi�er

population was con�gured to include a 50/50 mixture of intermediate and �nal

classi�ers. That is to say, the actions for half the classi�ers in any population

were output patterns and the actions for the other half were input patterns.

The standard bucket-brigade algorithm was used with standard defaults (e.g.,

as used in [9]).

duced by the nearest-neighbours algorithm (NN). This �gure seems low but

actually reveals relatively poor performance (for reasons explained above). The

same goes for the other error rates shown. The columns headed `Meal freq.'

and `Nip freq.'

the leading animat (i.e., the total amount of drive that could be applied to the

wheels) was arranged to be 125% that of the pursuing animat. Thus the leading

animat had a small speed advantage over the pursuing animat. In Figure 5 we

see a trace of a simulated animat producing the pursuit behavior. The pursuing

animat is shown here using dashed lines. The leading animat is shown using

unbroken lines.

Figure 5:

2.7 Results for obstacle-avoidance and pursuit

The results for this second phase of experiments can be summarized by saying

that all the learning algorithms looked at were able to learn the two behaviors

rather easily. The main performance �gures are shown in Table 3. The col-

umn headed `avoidance-CF' shows the crash frequencies for the various animats

performing obstacle-avoidance while the column headed `pursuit-AD' shows the

`average distance to target' for the animats executing the pursuit behavior.

(The distances are proportional to the size of the space.) The row labels are

the names of the relevant learning algorithms as before. Note that the crash

frequencies and the average distances for all the trained animats are low when

compared with the randomly moving animat.

12

avoidance-CF pursuit-AD

hand-sim 0.000 0.048

random 0.780 0.246

conjgrad 0.006 0.076

ID3 0.006 0.041

NN 0.002 0.081

CS 0.009 0.088

x1 x2 x3

1 2 --> 1

2 2 --> 0

3 2 --> 1

3 1 --> 0

2 1 --> 1

1 1 --> 0

In this dataset we can observe a number of instantiation n-tuples, henceforth

called cases. First-order cases are instantiation 1-tuples. Examples include

<x1=3>, <x3=0> and <x2=2>. Second-order cases are instantiation 2-tuples.

An example is <x1=3, x2=1>. This case is observed in the fourth line of the

training set. A second-order case from the second line of the training set is

<x3=0, x1=2>. Since there are only three variables in all there is exactly one

Case Freq.

1

x2=2 0.5

x2=1 0.5

x3=1 0.5

x3=0 0.5

x1=3 0.33

x1=2 0.33

x1=1 0.33

x2=2 + x3=1 0.33

x2=1 + x3=0 0.33

x1=3 + x2=2 0.17

x1=2 + x2=2 0.17

x1=1 + x2=2 0.17

x1=3 + x2=1 0.17

x1=3 + x3=1 0.17

x1=2 + x2=1 0.17

x1=2 + x3=1 0.17

x2=1 + x3=1 0.17

x1=3 + x3=0 0.17

x1=1 + x3=1 0.17

Table 4:

3.2 Type-1 versus type-2 frequencies

A clear distinction must be made between cases (such as those considered above)

that can be observed directly in the training data, and cases that can only be

observed indirectly. For our purposes,

Constraint Freq. Fr. x3=0 Fr. x3=1

1 0.5 0.5

x2=2 0.5 0.33 0.67

x2=1 0.5 0.67 0.33

x1=3 0.33 0.5

Constraint Freq.

1

x3=0 0.5

x3=1 0.5

x4=1

� Type-1 regularity: divergence from chance-levels in type-1 frequencies.

� Type-2 regularity: divergence from chance-levels in type-2 frequencies.

To place this in a concrete setting, consider the example training sets shown

above. The output variable x3 is a binary variable. Thus the frequency for

either of its two possible instantiations is exactly 0.5. When we look at the type-

1 conditional frequencies for the training data we see that most of the values are

at or close to their chance-level of 0.5. However, when we derive relevant the

type-2 conditional frequencies (after recoding in the suggested way) we obtain

a frequency table in which every value diverges maximally from its chance level.

Intuitively, then, the training set can be classi�ed as exhibiting more type-2

regularity than type-1.

6

The frequency e�ects brought to light by the recoding translate naturally into

a completely general input/output rule. The table of type-2 conditional fre-

quencies makes it obvious that x3=1 if and only if x4=1. From this we trivially

obtain the input/output rule `x3=1 if x4=1; otherwise x3=0.' Thus we see how

the recoding e�ectively brings the regularity underlying the training set to the

surface. Once this has happened it is a straightforward matter for a learning al-

gorithm to exploit it. Recognizing the strong, mutual interdependence between

learning and regularity leads us to distinguish three classes of learning problem.

� Pure type-1 learning problems: problems that involve exploiting type-

1 regularities only,

� Pure type-2 learning problems: problems that involve exploiting type-

2 regularities only, and

� Hybrid problems: problems that involve exploiting some mixture of

x1 x2 x3 x4

1 1 1 --> 1

1 1 0 --> 0

1 0 1 --> 0

1 0 0 --> 1

0 1 1 --> 0

0 1 0 --> 1

0 0 1 --> 1

0 0 0 --> 0

Every single �rst and second-order conditional frequency for this mapping (for

values of the output variable x4) is at its chance level of 0.5. And, in fact, the

frequency statistics for parity mappings are always like this. If we are dealing

with n-bit parity then the highest order, non-degenerate frequencies are the

(n-1)th-order frequencies. Given binary variables we will necessarily �nd ex-

actly two occurrences of each (n-1)th-order case in the training set, and these

two cases will necessarily show a di�erent value for the `other' variable. Thus

the conditional frequencies for the case in

the basis of an input/output rule that implicitly invokes a reformulation step)

may well exhibit `spurious' type-1 regularity.

The example training set used above illustrates this. The problem is `intrinsi-

cally type-2' since the input/output rule used to construct the pairs assumes the

reformulation step of converting the original input variables to their di�erence.

And yet the type-1 frequencies show some marked, non-chance values (see the

frequencies for the cases <x2=1> and <x2=2>). These would be straightfor-

wardly exploited by an algorithm such as Perceptron [14] or ID3 [4].

Even where intrinsically type-2 problems show very little spurious type-1 reg-

ularity they may still be solved by sophisticated learning algorithms such as

backpropagation [6], cascade-correlation [8] or copycat [15].

8

It is, of course,

well known that backpropagation can solve problems based on parity, symme-

try or `shift' relationships and all these typically involve the algorithm deriving

what can be thought of as an internal recoding scheme.

However, we should not over-estimate the generality of such methods. All of

them introduce restrictive assumptions about the nature of the type-2 regularity

to be discovered. Backpropagation for example e�ectively assumes that the

required reformulation can be expressed in terms of the user-de�ned architecture

of semi-linear transfer functions, and that it can be discovered by the gradient

descent method embodied in the learning algorithm. If the assumption is invalid,

the learning necessarily fails.

This may help to explain why backpropagation usually fails to solve low-order

parity problems when they are presented as generalization problems (i.e., when

some cases are held back for testing purposes). The graph shown in Figure 7 was

produced from an empirical survey that involved running backpropagation on

4-bit parity generalization problems (with four, randomly selected cases used as

unseens) using a wide range of internal architectures, including the theoretical

minimal architecture. All the curves in the upper half of the graph are error

pro�les

9

for the testing set of four cases. All the curves in the lower half of

the graph are error pro�les for the training set. There are 32 pairs of curves in

all although many of them are bunched together in two clumps at the far left

of the graph. Rather obviously, generalization over the testing cases was never

observed to improve much beyond the chance level in any of the runs recorded.

But the point to note is that the training-set error pro�les typically go to zero

rather rapidly. This tells us that the generalization failure occurs in the context

of perfectly successful learning, i.e., perfect acquisition of the training cases.

This is a particularly concrete sort of generalization failure since it cannot be

8

This latter is not usually presented as a learning algorithm. However it can certainly be

construed as such.

9

The error measure is the average di�erence between actual and target activations. For

these experiments we used standard learning parameters; i.e., a learning rate of 0.5 and a

momentum of 0.9.

20

and pursuit) is actually based on a type-2 rather than a type-1 regularity. But

do we have any good reason to believe this is the case?

4.1 Type-2 problems are based on relativistic rules

As it turns out, there is a way of measuring the degree of type-1 regularity in a

given training set and we can apply this measure to show that simulation-derived

training sets for conditional-approach do embody low levels of type-1 regularity

when compared against training sets for the other two behaviors. However,

before describing the measure let us �rst make some informal comments about

the nature of the two regularity classes.

A (supervised) learning problem is always de�ned in terms of a target in-

put/output mapping. In all reasonable problems, the mapping is based on

an input/output `rule' of some sort and it is the task of the learning to discover

this rule and represent it in such a way as to enable unseen inputs to be mapped

onto their correct outputs. In the simplest case, the rule refers (perhaps im-

plicitly) to particular input-variable values. If it does so, we will expect to see

correlations between particular input values and particular output values. In

other words, the rule will tend to have a `representation' in the form of strong,

type-1, conditional-frequency e�ects.

But of course the rule may not refer | even implicitly | to particular input

values. It may refer to relationships between input values. The parity rule is an

obvious example. The parity rule does not `care' about explicit input values. It

only cares whether there is a particular relationship among them. And in this

the apparent width and the apparent closeness of the object.

10

The rules for

obstacle-avoidance and pursuit, on the other hand, are both based on estab-

lishing a direct correspondence between the apparent closeness of an object in

the sensory �eld and a particular behavioral response. In the case of pursuit,

the correspondence is a simple matter of sensory stimulation being transformed

into drive-wheel activity: objects appearing in particular parts of the sensory

�eld cause particular amounts of drive to be applied to the wheels to ensure an

appropriate move/turn. In the case of obstacle-avoidance the correspondence is

a matter of sensory stimulation indicative of very near objects inhibiting drive-

wheel altogether. Thus in both cases we are dealing with a non-relativistic rule;

i.e., a rule that takes account of explicit values rather than relationships between

them.

4.2 Measuring type-1 regularity

We �nd ourselves, then, increasingly in favour of the idea that the relative

hardness of `conditional-approach' is due to the fact that this problem is based

on a type-2 rather than a type-1 e�ect. However, to be more certain of this

conclusion we should attempt to measure the amount of type-1 regularity in the

various training sets and show that conditional-approach does indeed di�er in

this respect. (Measuring type-2 regularity is out of the question since it would

involve implicitly searching the whole of Turing-machine space.)

A measure of type-1 regularity must satisfy certain constraints. Obviously, it

must be sensitive to the degree to which type-1 frequencies diverge from chance

levels (since this is the essence of the e�ect in question) but it must not be

insensitive to dependencies between these e�ects. In almost all cases, we will

have many frequency e�ects associated with the same aspect of the regularity.

Thus if we simply work out the overall divergence from chance-frequencies (e.g.,

as an average or total) we will compute a value which overstates the case.

To get over this problem we must measure divergence within a subset of inde-

pendent frequency e�ects. One way to obtain such a set involves using Bayesian

inference as an output-generation process. The procedure is as follows. First

of all we compute all empirical frequencies. Then, we �nd the smallest subset

of frequencies that | when treated as conditional probabilities | successfully

generate (via Bayesian inference) correct outputs for all inputs. This opera-

tion necessiit

given inputs.

11

We select a given input, we work out which cases it exhibits,

and we then integrate the relevant conditional probabilities to derive probability

distributions for the output values.

Finding the smallest subset of frequencies (probabilities) that completely `cap-

tures' the training set (i.e., enables correct outputs to be generated for all inputs)

is guaranteed to give us the set we want. Since the set is of a minimal size, we

know that it must minimize (even if it does not abolish) the overall dependence

between the e�ects. (If it did not, it would be possible to shu�e some cases

in and some cases out to achieve a smaller set.) Since it captures the entire

training set, we know that it cannot exclude any e�ect that reects an aspect

of the input/output rule.

Having derived a minimal subset of maximally independent frequency e�ects we

still have the problem of measuring the overall divergence from chance-levels. It

is not clear what tradeo� should apply between e�ects which diverge strongly

from chance levels, and e�ects which diverge weakly but are nevertheless more

general (i.e., useful) with respect to the capture of the training set. We can,

however, �nesse this problem entirely by observing that the relative size of the

subset, relative to the original training set, will itself provide a satisfactory

measure of the level of type-1 regularity. To compute the relative size we �nd

the ratio between the number of variable instantiations used in the training

set, and the number used in the frequency subset. With high levels of type-1

regularity we expect to see stronger and the more independent frequency e�ects.

When such e�ects exist we will need fewer of them for a complete capture of

the training set. Thus the relative size of the smallest subset that completely

captures the training set measures the overall level of type-1 regularity.

A natural way to summarize this measure of type-1 regularity is as a compression

ratio [16]. The compression ratio we de�ne as the ratio between the number of

variable instantiations used in specifying the frequency e�ects and the number

used in the original training set. We then de�ne the empirical redundancy of

a particular training set to be the compression ratio that is achieved when we

�nd the minimal subset of empirical frequency e�ects that completely captures

the training set.

We can show how the measure works by applying it to the toy learning problem

described above. This problem involves producing a 1 if the di�erence between

the two input variables is 1. Our initial formulation of the problem contained

just six cases and if we apply the measure to that training set we obtain a value

that is strongly biased by the overhead costs of frequency-subset speci�cation.

However, we can derive a more realistic (i.e., larger) training set for the problem

by allowing the input values to vary between 0 and 4. This gives us the training

pairs shown on the left below.

11

Of course, doing so entails assuming the statistical independence of variables.

24

Original pairs Derived pairs

0 0 --> 0 0 0 0 --> 0

0 1 --> 1 0 1 1 --> 1

0 2 --> 0 0 2 2 --> 0

0 3 --> 0 0 3 3 --> 0

0 4 --> 0 0 4 4 --> 0

1 0 --> 1 1 0 1 --> 1

1 1 --> 0 1 1 0 --> 0

1 2 --> 1 1 2 1 --> 1

1 3 --> 0 1 3 2 --> 0

1 4 --> 0 1 4 3 --> 0

2 0 --> 0 2 0 2 --> 0

2 1 --> 1 2 1 1 --> 1

2 2 --> 0 2 2 0 --> 0

2 3 --> 1 2 3 1 --> 1

2 4 --> 0 2 4 2 --> 0

3 0 --> 0 3 0 3 --> 0

3 1 --> 0 3 1 2 --> 0

3 2 --> 1 3 2 1 --> 1

3 3 --> 0 3 3 0 --> 0

3 4 --> 1 3 4 1 --> 1

4 0 --> 0 4 0 4 --> 0

4 1 --> 0 4 1 3 --> 0

4 2 --> 0 4 2 2 --> 0

4 3 --> 1 4 3 1 --> 1

4 4 --> 0 4 4 0 --> 0

The empirical redundancy of this training set turns out to be 14.6%. Recon�g-

uring the training pairs, adding in an extra input variable whose value is just

the di�erence between the �rst two input variables, gives us a training set whose

empirical redundancy is 89%, i.e., a great deal higher. The di�erence between

these values clearly reects what we already know to be the case: that the de-

rived pairs e�ectively reify (in type-1 form) the type-2 regularity in the original

pairs.

12

When we apply our measure of type-1 regularity to simulation-derived training

sets for the three learning problems we �nd | as we expected | that the value

for conditional-approach stands out as a special case.

13

When we tested training

12

The discrepancy between the two redundancies is particularly extreme due to the fact

that in this case we added the extra variable rather than substituted it for the original two

input variables.

13

In computing these measures we adopted a probabilistic approach to case identity. In

the conventional scenario, case identity is a clear-cut issue: any two cases either are or are

25

sets for pursuit, obstacle-avoidance and conditional-approach we found that the

empirical redundancy of the latter was markedly lower, see Table 8. It is not

quite as low a value as we see in the case of the toy example above. However,

this is only to be expected since with a much larger training set and many more

input variables we expect to see many more spurious type-1 regularities. The

hypothesis regarding the type-2 nature of conditional-approach, then, seems to

be borne out by this particular statistical analysis.

Behavior Empirical redundancy

Obstacle-avoidance 86.6

Pursuit 93.1

Conditional-approach 63.3

Table 8:

5 How could

of the conditional-approach problem. Thus any one of our learning algorithms,

provided with an appropriate recoding ability, should be able to solve the prob-

lem. In the case of classical (i.e. program-based) learning algorithms it is easy

to imagine how the recoding might be achieved: it would simply involve an

implementation of the steps for the relevant control procedure. In the case of

a network-based learning the question of the implementation of the recoding

is less obvious. The results with respect to the various network learning algo-

rithms suggest that a single-net implementation of the behavior may be di�cult

to obtain. However, it turns out to be fairly straightforward to `hand-code' a

multi-network implementation of the behavior.

As we have noted, at the most basic level, conditional-approach is all about

performing a size-discrimination given only range and location information. The

size of an object in the sensory �eld is a relativistic property of the apparent

closeness and the apparent width of the object. As objects get closer they appear

to get wider. Thus the actual width of an object is a function of the ratio between

the apparent width and the apparent closeness. An obvious decomposition of

the size-discrimination task, then, involves computing the actual size of the

object by �nding the ratio between the apparent closeness and the apparent

width.

We can build a subnet for that implements this decomposition as follows. The

task of calculating the ratio can be roughly approximated by feeding activation

values representing apparent closeness and apparent width into a unit with a

bipolar activation function (e.g., tanh). If one connection is positively weighted

and one negatively weighted the activation of the sigmoid unit will be `at' (i.e.,

zero) just in case the ratio between the two values is close to 1. By arranging for

need only establish positive connections from all these hidden units to a single,

linear output unit. The activation of the output unit will e�ectively measure

the number of activated hidden units and therefore of the size of the object in

the sensory �eld.

This decomposition solves the problem of building a largeness detector. How-

ever, for a complete solution we need a network that integrates this detector into

a more general structure that also serves to implement the various behavioral

responses. A plausible approach might involve building an `approach net' that

could potentially serve the dual purpose of (1) implementing the basic approach

operation and (2) carrying out the computation of apparent width. A possible

architecture for this subnet is shown in Figure 8. The network has seven input

units via which the seven proximity stimuli are received. Each of these inputs

feeds directly on into a single hidden unit whose bias and threshold is set so as to

achieve the zero-thresholding e�ect described above. Activation from these hid-

den units then ows on into the two, main output units. Each of these controls

the drive applied to one of the wheels, with the amount of drive corresponding

linearly to the amount of activation.

Input units

Motor-control units

Hidden units

Figure 8:

The weights between the hidden units to the two main output units are arranged

6 Summary and concluding comments

The paper sought to investigate the extent to which learning and evolutionary

methods can be used to obtain simple, adaptive behaviors. It presented the

results of a comparative study that looked at the conditional-approach behavior.

The results of the study showed that several, powerful learning methods are

unable to successfully learn the conditional-approach behavior even though they

are perfectly capable of learning other, closely related behaviors such as obstacle-

avoidance and pursuit.

The failure on conditional-approach training was explained using a statistical

analysis. This showed that learning problems may involve discovering some

blend of two types of regularity and that problems that primarily involve dis-

covering the more accessible (type-1) form of regularity are likely to be more

easily solved in general. Formal and informal arguments were put forward to

establish that the conditional-approach learning problem involves exploiting the

less accessible, type-2 form of regularity. The implication was then drawn out

[7] Becker, S. and Cun, Y. (1988). Improving the convergence of back-

propagation learning with second-order methods. CRG-TR-88-5, Univer-

sity of Toronto Connectionist Research Group.

[8] Fahlman, S. and Lebiere, C. (1990). The Cascade-Correlation Learning Ar-

chitecture. CMU-CS-90-100, School of Computer Science, Carnegie-Mellon

University, Pittsburgh, PA 15213.

[9] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Addison-Wesley.

[10] Duda, R. and Hart, P. (1973). Pattern Classi�cation and Scene Analysis.

New York: Wiley.

[11] Nehmzow, U., Smithers, T. and Hallam, J. (1989). Really useful robots.

In T. Kanade, F. Green and L. Hertzberger (Eds.), Proceedings of IAS2,

Intelligent Autonomous Systems (pp. 284-292). Amsterdam.

[12]

