

1 Introduction

Scheduling in its various guises has been used by the GA community for

a number of years to investigate the application of GAs to a challenging

and important class of combinatorial optimisation problems. These stud-

ies have concentrated on speci�c scheduling problems or speci�c classes of

scheduling problems [1]; [9]; [6]. This report describes the application of a

Distributed GA to the generic scheduling problem (i.e. the entire class of

scheduling problems). We have achieved this by formulating and implement-

ing a framework for de�ning, simulating and solving scheduling problems in

a generalised way.

The results reported here are based on preliminary testing of the system

using 100 large scale problems in a comparison of three scheduling tech-

niques: random search, dispatching rules (a heuristic technique) and a DGA.

The problems were generated to reect the underlying form of JSS that we

have tackled previously [6], however they were scaled up to have approxi-

mately 50{100 times more schedulable tasks. We found that the random

search and dispatching rules methods were able to reduce the makespan of a

schedule (using the mean of 10 random solutions as a base for comparison)

by about 40 percent. Whereas, the GA was, on average, able to reduce the

makespan by 60 percent.

2 A Generic Scheduling System

many of the necessary constraints in the problem.

This aspect of the system adds to the dimensionality of the problem.

Although the problems we have used for this study are based on job-shop

problems they also include the aspect of material supply: transport rate,

stock control etc. This more accurately models the real scheduling problems

that industry encounters. These problem are in the class of JSS problems,

but are much harder than those usually tackled [8] because they have been

reformulated to include material scheduling.

2.2 Objective Functions

SMOGS reads the problem description and creates a model of the schedul-

ing environment. Candidate solutions are created by one of the search tech-

niques available, presently: random search, dispatching rules or a DGA.

One (or a combination) of a number of possible objective functions are used

to determine the worthiness of that schedule. The objective function is a

discrete event simulation which builds schedules by decoding chromosomes

evolved by the DGA. These are mapped into a 'gantt chart' (cf. [2]) like

data structure via a `resource availability graph' (see section 2.3). The re-

source availability graph is built only once at the beginning of each run.

At the present time the user can set the objective function to any one or

user de�ned combination of: makespan, mean ow time, resource utilisation,

UHOHDVH�GDWH 5'M

D�GXH�GDWH ''M

D�FRPSOHWLRQ�WLPH &7M

IORZ�WLPH)7M� �&7M���5'M

ODWHQHVV /$M� �&7M���''M

CHROMOSOME STRUCTURE

format G G G G G G G G G G G G G G G G G GG GG G G G GGG G

type O O O O O O O O T T T T T T T T T TT TT T T T TTT T

map N N N N N N N N

label task order resources reservoirs

number 8 8 12

bytes 32 32 48

Table 2: Example Encoding of a Chromosome.

1. The �rst T genes contain integers in the range 0 < Tn < T denoting

the ordering of tasks, i.e. how they are place on the gantt chart. The

ordering not only de�nes the precedence of one task over another on a

given resource, but also assigns precedence of material supply to tasks

earlier in the order, (even though their time slot might be later than

a task later in the order which is placed on a less utilised resource).

2. The next T genes in the chromosome denote the resources that tasks

will use to complete. The format is such that the �rst resource is

allocated to task 1 in the problem data structure, not the �rst task in

the ordering de�ned in the �rst part of the chromosome.

3. The rest of the chromosome is dedicated to mapping which reservoir

will supply what material to which task{reservoir pair. A reservoir

can be thought of as a bu�er that releases materials to (in the case of

a job-shop, machines) the resources which process tasks. It is mapped

out in the following way:

for each task in the problem data structure

and for each material required by that task

there is a gene that denotes the reservoir

that will supply the material.

Example 1: This very simple problem has 8 tasks, 1 of which requires

3 materials, 2 of which requires 2 materials, the rest requiring only 1. The

chromosome structure would look like table 2.

10

ecute. Much of the schedule building work has been `taken out of the loop'

by building the resource availability graph and the chromosome 'range' map

at the start of the run. Thus enabling the solution of larger problems. The

real signi�cance of this rather speci�c encoding is that it is not speci�c to

any sub-class of the generic scheduling problem, but encodes for the whole

class of problems.

5 Operators

Crossover in the �rst (type O) section of the chromosome works in the

following way: a sub-string of one parent is found and inserted into the

other parent once the items in the sub-string have been removed from the

receiving parent. Sub-string length, position and insertion point are chosen

at random.

Crossover for type T is more straight forward. It is implemented in the

following way. N crossover points are chosen in the parent chromosomes.

Often this will be one crossover point per chromosome, however this can be

de�ned by the user. The section before the crossover point in parent A is

concatenated with the section after the crossover point in parent B to form

the new child chromosome.

Mutating the �rst section of the chromosome, which represent a unique

ordering of tasks, is more problematic than bit mutation of the binary strings

used for the second and third section of the chromosome. Mutation of an

ordered set can take a number of forms. In all cases, the restriction that one

of each of the numbers in the range f1; Tg, where T is the number of genes

in the ordered section of the chromosome, must hold. This can be achieved

by implementing 1 or all of:

1. Swapping the order of two juxtaposed tasks in the chromosome.

2. Swapping the order of two task allocated the same resource.

3. Moving a higher priority task on ResourceN to just after the juxtapose

(lower priority) task on Resource N .

Mutation of type T genes can be done in two ways:

1. Mutate one or more bits. This can cause big or small changes in

what any

0$.(63$1�3(5&(17$*(�'(&5($6(

0HDQ 6WG��'HY� 0LQ 0D[

produced by the traditional techniques in place in industry today. This

problem set has really stretched the limit of what is possible with current

GA technology.

Future work will include a full implementation of the MOGS system de-

sign. Although this report has not covered the di�erence between the MOGS

speci�cation and the SMOGS implementation, various classes of scheduling

problems can be easily speci�ed using MOGS (which supports a hierarchi-

cal task structure) that are di�cult to represent and solve using SMOGS. A

full implementation of MOGS will also provide a faster and more e�ective

problem modeller.

References

[1] L. Davis. Job-shop scheduling with genetic algorithms. In J. Grefen-

stette, editor, Proc. Int. Conf. on GAs, pages 136{140. Lawrence Erl-

[9] H. Tamaki and Y. Nishikawa. Parallelled genetic algorithm based on

a neighborhood model and its application to job-shop scheduling. In

Proceedings of PPSN II. Springer Verlag, 1992.

17

