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Abstract

In recent years a number of researchers have successfully applied ar-

tificial evolution approaches to the design of controllers for autonomous
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1 Introduction

In this paper we report on our recent work evolving controllers for robots which
are required to work as a team. The word ‘team’ has been used in a variety of
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heavily on the use of essentially global information, shared by radio commu-
nication. For example, in Matarić’s implementation of coordinated movement
with homogeneous robots, robots made use of a common coordinate system
(through radio beacon triangulation) and exchanged positional information via
radio communication in order to remain coordinated (Matarić, 1995). Mech-
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successful behaviour of one of the evolved teams in some detail, showing that
task success is dependent on the robots adopting and maintaining separate roles
performing as team, in accordance with definition given at the beginning of this
paper.

2 The Robots and their Task

2.1 The Robots

Figure 1: Two of the
robots used in the experi-
ment. The cameras shown
are not used for the experi-
ments described in this pa-
per.

Two of the robots used in these experiments are shown in figure 1. Each
robot’s body is 16.75 cm wide by 16.75 cm long by 11 cm high (this excludes
the additional height of the camera). Two motor-driven wheels, made of foam-
rubber, are arranged one on either side of the robot and provide locomotion
through differential drive; the robots have a top speed of just over 6cm/s. An
unpowered castor wheel, placed rear-centre, ensures stability. In the experi-
ments described in this paper, a robot’s only source of sensory input comes
from its four active infrared sensors, each comprising a paired infrared emitter
and receiver. Each robot has two infrared sensors at the front and two at rear,
as illustrated in figure 2. Although the robots are also96(pr)-9442(s)-0.333276(,)-353.675(ea)0.42462.a(er)-054362(i)1totin
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Figure 2: Plan view of
a robot, drawn to scale,
showing location of the
IR sensors and wheels.
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of the other robots.

2.3 The Task

The task with which we present the robots is an extension of that used in
previous work which involved two simulated Khepera robots (Quinn, 2001a,b).
Adapted for three robots, the task is as follows: Initially, the three robots are
placed in an obstacle-free environment in some random configuration, such that
each robot is within sensor range of the others. Thereafter, the robots are
required to move, as a group, a certain distance away from their initial position.
The robots are not required to adopt any particular formation, only to remaining
within sensor range of one another, and to avoid collisions. During evolution
robots are evaluated on their ability to move the group centroid one metre within
the space of three simulated minutes. However, our expectation was that a team
capable of this would be able to sustain formation movement of much longer
periods. The robots are not required to adopt any particular formation, only to
remaining within sensor range of one another, and to avoid collisions. Since the
robots start from initial random configurations, we anticipate that successful
completion of the task will entail two phases. The first entailing the team
organising itself into a formation, and the second entailing the team moving
whilst maintaining that formation.

From the characterisation of the robots’ sensors in the previous section, it
should be clear that these impose significant constraints. They provide very
little direct information about a robot’s surroundings. Any given set of sensor
input can be the result of any one of large number of significantly different cir-
cumstances. Furthermore, outside the limited range of their IR sensors, robots
have no indication of each other’s position. Any robot straying more than two
body-lengths from its teammates will cease to have any indication of their loca-
tion (which can also occur at much closer distances, as can be seen from figure
3). Of course, a robot controller may employ strategies to overcome some of
the limitations of it sensors. For example, additional information can be gained
by strategies which combine sensing and moving, and the integration of sensor
input over time. However, it should be clear that the team’s situation contrasts
strongly with previous work in which robots utilised shared coordinate systems
and global communication. It is worth noting that biological models of ‘self-
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That fact that we are attempting design of controllers for a homogeneous sys-
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that all of the beam emitted from the sensor would strike the wall. IR reflected
from a wall can be calculated as a function of the distance between sensor and
wall, d, and angle of the sensor relative to a line orthogonal to the wall, θ, as
illustrated in figure 7 . We took measurements for d = 0, 2,. . . 20cm and θ =
-90, -70,. . . 90 degrees (i.e., the full range for which the wall could be sensed).
The variation of IR reading with distance for reflected IR is illustrated in figure
5, and an example of how readings vary with the angle θ is shown in figure 6.
Only one set of measurements was taken, that is, we measured one sensor on
one robot only.

Figure 7: Reflected IR was treated
as a function of the distance, d, and
angle of the sensor relative to a line
orthogonal to the wall, θ

Figure 8: Illustrating the 2-d ray-
tracing procedure. Of all the rays, 0
through n
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The IR lookup table stores only the sensor values which are generated by the
presence of one other robot. Nevertheless, the simulation must be able to deal
with the many occasions when two robots are simultaneously within range of a
third robot’s sensor(s). In such cases, two sets of readings can be taken from the
look-up table, one for each of the two robots that are within range of the third
robot’s sensors. However, the problem arises of how these two sets of values
are to be combined to yield a single set of sensory readings. This is a problem
because one robot may occlude the other, and the look-up table provides no
information as to whether occlusion is taking place. Detecting occlusions and
calculating their effect would be a significant additional computational expense
in the simulation—it would necessitate ray-tracing across the path of the IR
beam. To avoid this, we opted for a minimal and computationally inexpensive
solution to the problem. Namely, occlusion is accommodated but not simulated.

A

B

C

i. No occlusion.

A
B

C

ii. Full occlusion.

A B

C

iii. Partial occlusion.

Figure 9: When two robots, A and B, are in range of a sensor belonging to a
third robot, C, the look-up table gives two independent values for C’s sensor; the
sensor value due to A’s proximity, SA, and the value due to B’s proximity, SB .
In an accurate model, occlusion would be taken into account when combining
SA and SB. Thus, in panel i, where there is no occlusion, C’s sensor value
should be SA +SB . In panel ii, where A is fully occluded by B, C’s sensor value
should be SB . In panel iii, where A is partially occluded by B, C’s sensor value
should be SB , plus some proportion p, (0 < p < 1), of SA.

Consider that two robots, A and B, are both within range of a sensor be-
longing a third robot, C. Using the look-up table, we can establish C’s expected
sensor reading due to the presence of A, call this SA, and its reading due to B,
call this SB . We need to establish the the combined, final value, Sfinal. We
proceed by finding the possible range of values within Sfinal can lie. The two
extremes, non-occlusion and full occlusion, correspond to the extremes of the
range of possible values for Sfinal. If we know that neither robot occluded the
other, as in the situation illustrated in figure 9(i), then we could simply to sum
the sensor value due to each, i.e. Sfinal = SA + SB. This is the maximum pos-
sible value of Sfinal
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robot. In the case of partial occlusion, illustrated in figure 9(ii), Sfinal will be
the value due to the occluding robot plus some proportion (< 1) of the value
due to the partly occluded robot. To calculate the exact value due to the partly
occluded robot would require ray-tracing across the part of the beam hitting
that robot, or some other form of numerical integration. Nonetheless, it is clear
that the cases of partial occlusion yield values of Sfinal greater than that of full
occlusion, but less than in cases where there is no occlusion. Therefore, given
values for SA and SB we know range within which Sfinal lies. In the simulation,
we set the combined, final value, Sfinal as:

Sfinal = max(SA, SB) + cR

[

SA + SB − max(SA, SB)
]

where cR is a robot-specific scalar set randomly in the range [0:1] for each robot
at the beginning of each trial. Note that to avoid calculating which robot is
closest to the sensor we make the approximation that the larger value of SA and
SB will be the value due to the closest robot2. Note that this method will hardly
ever produce the correct value for Sfinal and controllers will have to adapt so as
to be capable of dealing with any value of Sfinal within range specified above.
However, any controller capable of this will be capable of dealing with correct
values of Sfinal, since these will always lie within that range.

3.2 Direct IR

3.2.1 Measurement and Extrapolation

Figure 10: Direct IR was measured as a function of the distance, d, and the
angle, φ.

Measuring direct IR was more difficult than measuring reflected IR, since it
required lining up two robots’ sensors, and eliminating any reflected IR. Read-
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from the closed robot and the sum of the IR reflected from both. However,
in the case of direct IR, occlusion can reduce an IR value from the maximum
possible value down to zero. Hence, we contrived to model the occlusion of
direct IR, albeit as minimally as possible. The procedure we adopted required
making some simplifying assumptions, which reduce the accuracy of our model,
but made the occlusion-handling process much faster. Our first simplifying
assumption is based on the following observation: When one robot receives
IR emitted by a second robot, this usually only involves one emitter and one
receiver. This is simply due to the positions of the robots’ sensors and the
properties of the IR beam. In certain positions the beam emitted from one
receiver may strike two receivers, or two beams (emitted by the same robot)
may strike two separate receivers. However, in such cases, the amount of IR







4 THE EVOLUTION OF CONTROLLERS 19



4 THE EVOLUTION OF CONTROLLERS 20

Here T is the neuron’s threshold. mt is a function of a neuron’s weighted,
summed input (s), and the value of mt−1 scaled by a temporal decay constant,
such that:

mt =

{

(γA)mt−1 +
∑N

n=0
wnin if Ot−1 = 0

(γB)mt−1 +
∑N

n=0
wnin if Ot−1 = 1

where γA and γB are decay constants, and wn designates the weight of the con-
nection from the nth input (in) that scales that input. γA and γB are constrained
to the range [0:1], the values of weights and thresholds are unconstrained. For
certain parameter settings this neuron will behave like a simple spiking neu-
ron, accumulating membrane potential, firing and then discharging (i.e., with
γA
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entailed that a random Gaussian offset was applied to each real-valued param-
eter encoded in the genotype with a small probability, such that the expected
number of micro-mutations per genotype was 2.0. The mean of the Gaussian was
0, and its s.d is 0.33 of that parameter’s initialisation range. The threshold and
weight parameters were unbounded, but the decay constants were restricted to
their initialisation range of [0:1]. In cases where the mutated value of a bounded
parameter fell outside a bound, its value was set at uniform random to a value
between the bound and its pre-mutated value.

Three types of macro-mutation were employed. The first two involve the ad-
dition and deletion of genetic material. Ideally we would like to balance the rate
at which new genetic material is added to and removed from the population,
facilitating steady growth as the added material becomes a functional part of
the genotype. We have found that, on average, addition is less disruptive that
deletion, so in an attempt to maintain a balance, we have set addition rates
lower than deletion rates; individuals subject to addition mutations are more
likely to remain in the population than those subject to deletion mutations. The
first type of macro-mutation involved the addition or deletion of genes. An ad-
dition mutation occurred with a probability of 0.004 per genotype, with the new
gene being created and added to the genotype by the same procedure described
in section 4.2.1 above, except that the maximum number of connections per
connection list was limited to two (in order to minimise disruption). Deletion
occurred with probability 0.01, and was applied in one of two ways. With a
probability of 0.5, one gene was selected at uniform random and removed from
the genotype, otherwise a gene was chosen for removal at biased random, us-
ing roulette-wheel selection, with a probability inversely proportional to its age
(i.e. the number of generations that it had been in the population)5. The sec-
ond type of macro-mutation involves the addition and deletion of connections.
With probability 0.02, a new connection was created (following the procedure
described in section 4.2.1); the connection had an equal probability of being an
input or an output, and was added to a randomly chosen gene. With a proba-
bility of 0.04, a gene was selected at uniform random, a connection list chosen
(with equal probability) and, unless that list was empty, a randomly chosen con-
nection was deleted. The final type of macro-mutation was reconnection. With
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4.4.2 Recombination

The recombination (or ‘cross-over’) operator creates two new ‘offspring’ indi-
viduals by combining encoded variables from two ‘parent’ genotypes. Since this
is variable-size encoding, the addition and deletion of genetic material means
that two genes at the same position on their respective genotypes may not be
correlated at the phenotypic level. If crossover were simply based on genotype
position, as it is with standard fixed-length encoding schemes, it would often
be highly disruptive, with unrelated variables being crossed-over (Jakobi and
Quinn, 1998). To avoid this problem, the recombination operator utilises gene’s
i.d. tags, rather than their position on the genotype, in order to maintain the
structural integrity of the resulting genotypes. The i.d. tag is used by the re-
combination operator to pair genes with a common ancestor, and thereby helps
to ensure that genes with similar phenotypic functionality crossed. Crossover
takes two parent genotypes, P1 and P2, and generates two offspring, O1 and O2

in the following manner: Each of offspring initialised as a copy of a different
parents (e.g., O1 = P1 and O2 = P2). The offspring genes are then paired
by identity number; any gene that O1 has in common with O2 is crossed (i.e.
swapped) with a probability of 0.5. Any remaining un-paired genes are not
crossed.

5 Evolved Behaviour

To date, we have undertaken a total of ten evolutionary runs. Four of these were
terminated at early stage because they seemed unpromising. The remaining
six runs produced teams capable of a consistently high standard of success
after being left to evolve for between two and five thousand generations. There
were significant behavioural differences between the successful teams, and we
have chosen to focus on a single team rather than attempt to summarise them
all. In describing the behaviour of the team, we wish primarily to achieve two
objectives. The first is to demonstrate that the robots’ behaviour is indeed that
of a team, in the sense in which the term was introduced at the beginning of
this paper. The second is to illustrate the process by which these roles become
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(i) (ii)

(iii) (iv)

Figure 20: An example of the team moving into the formation posi-
tions. (i) The robot’s initial positions. Initially, C is attracted B’s rear sensors,
causing B to turn tightly, A circles away, clockwise (ii) B and C begin to form
a pair as A circles round towards them (iii) A disrupts the pair formation of
B and C, subsequently pairing with B. (iv) C becomes attracted to B’s rear
sensors and begins to move into position. Shortly after this, the team achieve
their final formation.

front robot, formation again move off in the opposite direction, with each robot
performing the role appropriate to its position. Thus, the fact that each robot
remains in the same role within the formation is solely by virtue of the spatial
organisation of the formation, rather than any long-term differences in internal
state7.
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5.3 Role Allocation

How are the roles initially allocated within the team? This is essentially to ask
how the robots achieve their formation positions from random initial positions,
since as has already been noted, that the maintenance of individual roles is
a function of the spatial organisation of the team formation. Any discussion
of the initial interactions of the robots will be difficult without at least some
information about how the robots responds to sensory input, so we will start by
giving a very simplified explanation. In the absence of any sensory input, the
robots move in a small clockwise forwards circle (the motor output is a cyclic
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differentiates the team. The excluded robot’s role is now determined—it will
become the rear robot in the formation. Further differentiation occurs when the
unpaired robot approaches the back sensors of one of the waiting pair, thereby
determining the final two roles.

6 Conclusion

The structured cooperation required for the performance of a team task presents
interesting problems for a distributed control system. This is particularly true
when individuals are homogeneous, and constrained to only make use of limited
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